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Rough set theory has already been algebraically investigated for decades and quasi-
Boolean algebra has formed a basis for a number of structures emerging out of rough sets.
Pre-rough algebra is one such algebra amongst them. A number of structures based on
quasi-Boolean algebra but weaker than pre-rough algebra already exist. In this paper some
algebras and their logics are added. Rough set models of the newly created algebras and
some of the existing algebras are presented.
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1. Introduction

Rough set theory was proposed by Pawlak [6] in 1982 to address information about objects in terms of some attribute–
value systems. Thereafter, a huge amount of research has been carried out on the foundation and applications of the theory.
Defining rough sets in various ways, several abstract algebraic structures have been developed. Pre-rough algebra, among
them, is one (see Definition 2.1) [1].

The base of this abstract pre-rough algebra is a quasi-Boolean algebra (qBa) which is a structure U;^;_;:; 0;1h i, where

1. U;^;_;0;1h i is a bounded distributive lattice,
2. ::x ¼ x, for all x in U,
3. : x _ yð Þ ¼ :x ^ :y, for all x; y in U.

A qBa is a more general structure than a Boolean algebra as the law of excluded middle (x _ :x ¼ 1) and the law of contra-
diction (x ^ :x ¼ 0) generally do not hold in a qBa. In [7], quasi-Boolean algebra has also been called De Morgan lattice.

Later, from different motivations, many abstract algebras stronger than qba but weaker than pre-rough algebra were
developed [1,8,9,4,3]. Some of them are topological quasi-Boolean algebra (tqBa) [1], topological quasi-Boolean algebra with
modal axiom S5 (tqBa5)[8,12], intermediate algebra of type 1 (IA1), intermediate algebra of type 2 (IA2), intermediate alge-
bra of type 3 (IA3) [12,9], System0 algebra, systemI algebra, systemII algebra [8].
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Pre-rough algebra has a rough set model in [1]. But, as per our knowledge, there is no ‘‘proper set theoretic rough set mod-
el” of the algebras tqBa, tqBa5, IA1, IA2, IA3, System0 algebra, SystemI algebra, SystemII algebra which are basically weaker
than pre-rough algebras. The phrase ‘proper set theoretic rough set model’ means that it should be a set model and should
not reduce to a pre-rough algebra. An attempt is taken in this paper to construct such models of the above algebras. As all
these algebras are based on qBa, we focus our attention on a representation theorem of qBa presented by Rasiowa in [7].

Following her, for any set U we can construct a structure 2U ;\;[;�;£;U
D E

;2U representing the power set of U, which

can be proved to be a quasi Boolean algebra, where �, called quasi-complementation, is not the standard set-theoretic com-
plementation c but is defined by means of an involution g (i.e. a map satisfying g g uð Þð Þ ¼ u, for all u 2 U) namely
� P ¼ g Pð Þð Þc; P#U. This qBa may be used as base to construct models of the said algebras where the quasi-
complementation � would be the counterpart of the quasi-negation : available in the algebras. The next step is to construct
the counterparts of the operators I and C present in the abstract algebras. These operators are dual with respect to :, i.e.,
I ¼ :C: and vice versa. We look for the counterparts of these operators I and C. The standard lower and upper approximation
operators in a generalised approximation space U;Rh i are dual with respect to the set complementation [14,15,10] but not
with respect to the quasi-complementation [11]. For this reason, we do not use these approximation operators as counter-

parts in the quasi-Boolean algebra 2U ;\;[;�;£;U
D E

. So, the question is, how to define them in this quasi-Boolean algebra.

In this regard, we follow our recent paper [11] where a new approximation space U;Rg� �
, called g-approximation space, has

been defined out of a generalized approximation space U;Rh i, and an arbitrary involution g on U. In this space, lower–upper
approximations Pg and Pg of a set P#U have been defined in order to make them dual with respect to the quasi-
complementation. Concerning these approximations, rough set models of some of the aforesaid algebras may be constructed
but the question of ‘proper’ that has been raised early remains unanswered. To solve the issue, we have studied the prop-
erties of algebras and Pg ; Pg in a g-approximation space U;Rg� �

. In case of the algebras, it is found that some standard modal
axioms e.g., T:Ix 6 x; S4 : Ix 6 IIx [5] and hence D:Ix 6 Cx are available in tqBa, whereas the modal axioms T, S4; S5 : CIx 6 Ix
and hence axioms D, B:CIx 6 x are present in tqBa5, IA1, IA2 and IA3. But, no information is available regarding the algebraic
counterpart of the modal axiom K in these algebras. We notice that the algebraic counterpart of K in the form
I x ! yð Þ ! Ix ! Iyð Þ ¼ 1 is irrelevant for some of the algebras tqBa, tqBa5, IA2, IA3 as there is no ! obeying the property
(P!) [for details see Section 2].

In [10], it has been shown that standard lower and upper approximations PR and PR in a generalized approximation space
U;Rh i satisfy the modal axiom K in the form Pc [ QR # PRð Þc [ QR. But, in our case, the lower–upper approximations Pg and Pg

generally do not fulfill � P [ Qg # � Pg
� � [ Qg whose algebraic form (in quasi-Boolean base) is I :x _ yð Þ 6 :Ix _ Iy. Hence, for

a proper set theoretic rough set model, it is required to check whether this form of K: I :x _ yð Þ 6 :Ix _ Iy holds in the above
algebras or not. In SubSection 2.1, we have examined it and found that this form of K holds in pre-rough algebra, IA1, IA2 but
does not hold in tqBa, tqBa5, IA3, System0, SystemI and SystemII.

We have defined a few abstract algebras viz. stqBa, stqBa-D, stqBa-T and stqBa-B based on qBa in Subsection 2.2. In each
of these algebras, one or more than one standard modal axioms are added except this form of K (as K generally does not hold
in our models) in order to develop algebraic systems in quasi-Boolean base parallel to the existing standard modal systems
depicted below.

Further, these algebras are correlated with the old algebras and logics and proper set theoretic rough set models have
been constructed for them.

For a clear understanding about the algebras we refer to Fig. 1 on page 5.
Section-wise details of this paper are as follows.
In Section 2, a number of algebraic structures based on qBa are defined in order to enhance the properties of I in hierar-

chical order starting from modal axiom D. A diagram of a relationship between the earlier algebras and newly created alge-
bras has been presented in Fig. 1. Availability of the modal axiom K:I :x _ yð Þ 6 :Ix _ Iy has been checked for all the algebras
mentioned in this section. Section 3 contains only sequent calculi corresponding to the new algebraic structures as no
Hilbert-type axiomatic systems can be constructed for them. Section 4 deals with set models. In this section, proper set the-
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Fig. 1. Relationship diagram of the algebras mentioned in Section 2. Bold-faced algebras are newly introduced in this paper whereas others are available in
different literature. P�Q stands for the algebra Q contains one new operation and some axioms for the new operation than the algebra P. P�!Q stands for
both the algebras P and Q have the same operations but Q contains some more axioms than P. P � � �Q stands for the algebras P and Q are independent to each
other.
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oretic rough set models of some of the algebras mentioned in Section 2 have been developed. Some concluding remarks are
included in the last Section 5.

2. Some algebraic structures based on qBa along with modal operators

In this section, a number of algebras stqBa, stqBa-D, stqBa-T and stqBa-B will be introduced. The reason for introducing
these algebras is as follows:

These structures except stqBa make algebraic systems based on quasi-Boolean algebra (not Boolean algebra) correspond-
ing to the standard modal systems D,T and B. The algebra stqBa also corresponds to a modal system but which is a non-
standard one. The other standard modal systems S4 and S5 already correspond to the existing algebras tqBa and tqBa5.
On the other hand, by introducing these algebras the gap with respect to the standard modal systems in the previous studies
of algebras is filled up now.

Fig. 1 will make the motivation transparent.
As mentioned in the introduction, the availability of the modal axiom K in the form I :x _ yð Þ 6 :Ix _ Iywill be checked for

the old algebras. The definitions of these algebras are:

Definition 2.1 [1]. A pre-rough algebra is a structure U;^;_;:; I;0;1h i, where I is a unary operator on U with the following
conditions:
1. U;^;_;:;0;1h i is a qBa.
2. I1 ¼ 1.
3. I x ^ yð Þ ¼ Ix ^ Iy, for all x; y 2 U.
4. Ix 6 x, for all x 2 U (6is the lattice order).
5. IIx ¼ Ix, for all x 2 U.
6. CIx ¼ Ix, for all x 2 U, where Cx ¼ :I:x.
7. :Ix _ Ix ¼ 1, for all x 2 U.
8. I x _ yð Þ ¼ Ix _ Iy, for all x; y 2 U.
9. Cx 6 CyandIx 6 Iyimplyx 6 y, for all x; y 2 U.
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Definition 2.2. An algebraic structure U;^;_;:; I;0;1h i is called

(a) a topological quasi-Boolean algebra(tqBa)[9] if and only if it satisfies the conditions from 1 to 5 as stated in Definition
2.1 of pre-rough algebra,

(b) a topological quasi-Boolean algebra 5(tqBa5)[9] if and only if it is a tqBa + condition 6,
(c) an intermediate algebra of type 1 (IA1) [9] if and only if it is a tqBa5 + condition 7,
(d) an intermediate algebra of type 2 (IA2) [9] if and only if it is a tqBa5 + condition 8,
(e) an intermediate algebra of type 3 (IA3) [9] if and only if it is a tqBa5 + condition 9,
(f) a System0 algebra [8] if and only if it satisfies the conditions 1;2 and x 6 yimpliesIx 6 Iy, for all x; y 2 U,
(g) a SystemI algebra [8] if and only if it is a System0 algebra + condition 7 + condition 9,
(h) a SystemII algebra [8] if and only if it satisfies the conditions from 1 to 3 and 7, 9.

In pre-rough algebra, the rough implication!: x ! y � :Ix _ Iyð Þ ^ :Cx _ Cyð Þ, for all x; ywas defined in terms of the other
operations satisfying the property (P!):
x 6 y if and only if x ! y ¼ 1; for all x; y:
This ! corresponds to the rough inclusion [1]. It is also crucial to the logical connective viz. implication ()) for developing
pre-rough and rough logics. It is to be noted that an implication satisfying the property (P!) is required in an abstract algebra
to develop the Hilbert-type axiomatic system corresponding to the algebra. This rough implication is also available in Sys-
temI algebra and SystemII algebra [8].

However, it was established in [2,9] that such an operation!can not be defined in terms of other operations fulfilling the
property (P!) in tqBa, tqBa5, IA2, IA3 (see Example 2.1) generally. As a result, the Hilbert-type axiomatic system correspond-
ing to these algebras can not be constructed. However, the Sequent Calculi have been developed corresponding to these alge-
bras in [12,8].

Example 2.1. (See[2,9]) A four-element tqBa as well as tqBa5, IA2 and IA3 is considered whose lattice structure follows
Fig. 2. The unary operation : is defined as :x ¼ x;:y ¼ y;:1 ¼ 0;:0 ¼ 1. I is defined as the identity operator, i.e., Iz ¼ z, for all
z. Now x ! x will be an element involving x;:;^;_ and I. But, this example shows that :x ¼ x; x ^ x ¼ x; x _ x ¼ x; Ix ¼ x and
hence x ! x ¼ x – 1ð Þ while x 6 x.

In IA1, the availability of such !is still open.

2.1. Availability of modal axiom K in the aforesaid algebras

We now examine whether the algebraic counterpart of the modal axiom K in the form I :x _ yð Þ 6 :Ix _ Iy is available or
not in the above algebras.

Proposition 2.1. I :x _ yð Þ 6 :Ix _ Iy holds in a pre-rough algebra.
Proof.
I :x _ yð Þ ¼ I:x _ Iy

6 :x _ Iy

6 :Ix _ Iy as Ix 6 xð Þ
Proposition 2.2. I :x _ yð Þ 6 :Ix _ Iy holds in any IA2.
Proposition 2.3. I :x _ yð Þ 6 :Ix _ Iy holds in any IA1.
Fig. 2. Hasse diagram (tqBa, tqBa5, IA2, IA3).
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Proof. First we shall show that in any IA1, I x _ Iyð Þ ¼ Ix _ Iy holds, for all x; y.
I x _ Iyð Þ ¼ I x _ Iyð Þ _ :Iy ^ I x _ Iyð Þf g
¼ I x _ Iyð Þ _ I:Iy ^ I x _ Iyð Þf g as CIz ¼ Iz gives I:Iz ¼ :Izð Þ ð1Þ
¼ I x _ Iyð Þ _ I :Iy ^ x _ Iyð Þf g
¼ I x _ Iyð Þ _ :I:I :Iy ^ x _ Iyð Þf g as CIz ¼ Izð Þ
¼ I x _ Iyð Þ _ :I: :Iy ^ I x _ Iyð Þf g
¼ I x _ Iyð Þ _ :I Iy _ :I x _ Iyð Þf g
¼ Iy _ I x _ Iyð Þ _ :I Iy _ :I x _ Iyð Þf g as Iy 6 I x _ Iyð Þð Þ
¼ Iy _ :I Iy _ :I x _ Iyð Þf g _ I x _ Iyð Þf g ^ 1
¼ Iy _ :I Iy _ :I x _ Iyð Þf g _ I x _ Iyð Þf g
^ Iy _ :I x _ Iyð Þð Þ _ :I Iy _ :I x _ Iyð Þð Þf g
¼ Iy _ :I Iy _ :I x _ Iyð Þð Þf g _ I x _ Iyð Þ ^ :I x _ Iyð Þf g
¼ Iy _ :I Iy _ :I x _ Iyð Þð Þf g
¼ Iy _ :I: :Ix ^ I x _ Iyð Þð Þf g
¼ Iy _ :I:I :Iy ^ x _ Iyð Þð Þf gby2:1 ð2Þ
¼ Iy _ :I:I :Iy ^ xð Þ _ :Iy ^ Iyð Þf gf g
¼ Iy _ :I:I :Iy ^ xð Þf g
¼ Iy _ I :Iy ^ xð Þf g as CIz ¼ Izð Þ ð3Þ
¼ Iy _ :Iy ^ Ixð Þf gby2:1 ð4Þ
¼ Iy _ :Iyð Þ ^ Iy _ Ixð Þ
¼ Ix _ Iy ð5Þ
Proof of the main result:
I :x _ yð Þ _ :Ix _ Iyð Þ
¼ I :x _ yð Þ _ :Ixf g _ Iy

¼ I :x _ yð Þ _ :Ixf g _ Iy ðby 2:1and 2:2Þ
¼ I :x _ :Ixð Þ _ yf g _ Iy

¼ I :Ix _ yð Þ _ Iy

¼ :Ix _ Iy _ Iy ðby 2:1and 2:2Þ
¼ :Ix _ Iy
The following example is considered to show that I :x _ yð Þ 6 :Ix _ Iy does not hold in a IA3.
Example 2.2. Let P ¼ 0; x; y;1f g. Hasse diagram of the lattice follows Fig. 2. Operations : and I are defined in the tables given

below.

Clearly, P with the above operations is a IA3. As I :x _ yð Þ ¼ 1i:Ix _ Iy ¼ x, the algebraic counterpart of K is not available
in this IA3. Note that IP2 is also not valid in this algebra as I x _ yð Þ ¼ 1 – Ix _ Iy ¼ x.

Remark 2.1. By the above Example 2.2, it is clear that I :x _ yð Þ 6 :Ix _ Iy does not hold in a tqBa and tqBa5.
The following example shows that I :x _ yð Þ 6 :Ix _ Iy is not valid in a SystemII algebra.

Example 2.3. Let Q ¼ 0; x;1f g. Hasse diagram of the lattice is given in Fig. 3 and operations : and I are defined in the tables

given below.

Q with the above operations is a SystemII algebra. The algebraic counterpart of K is not valid in this algebra as
I :x _ 0ð Þ ¼ 1i:Ix _ I0 ¼ 0.

Remark 2.2. As a SystemII algebra is a SystemI algebra as well as a System0 algebra, by Example 2.3, it is clear that K:
I :x _ yð Þ 6 :Ix _ Iy does not hold in a SystemI algebra and System0 algebra.
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Fig. 3. Hasse diagram(SystemII algebra).
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2.2. Some new structures based on quasi-Boolean algebra along with standard modal axioms

We now introduce the algebras stqBa, stqBa-D, stqBa-T and stqBa-B as follows.

Definition 2.3. An abstract algebra U;^;_;:; I;0;1h i will be called a semi topological quasi-Boolean algebra (stqBa) if and
only if

1. U;^;_;:;0;1h i is a qBa.
2. I1 ¼ 1.
3. I x ^ yð Þ ¼ Ix ^ Iy, for all x; y 2 U.

Example 2.3 is an instant of a stqBa where K: I :x _ yð Þ 6 :Ix _ Iydoes not hold.
The following Example 2.4 shows a stqBa where the modal axiom D (Ix 6 Cx;C � :I:) and T (Ix 6 x) do not hold.

Example 2.4. Let S ¼ 0;1f g. Hasse diagram of the lattice is given in Fig. 4 and operations : and I are defined in the tables

given below.

S with the above operations is a stqBa. The modal axioms D and T are not available in this algebra as I0 ¼ 1iC0 ¼ 0 and
I0 ¼ 1i0.

Definition 2.4. Let U;^;_;:; I;0;1h i be a stqBa. Then it is said to be a semi topological quasi-Boolean algebra with modal
axiom D (stqBa-D) if and only if

1. Ix 6 Cx, for all x 2 U (Cx ¼ :I:x).

The following example is a stqBa-D where the modal axiom T is not available.

Example 2.5. For this example, the same set P as well as the same Hasse diagram of the lattice in Example 2.2 is considered.

Operations : and I are defined in the tables given below.
Fig. 4. Hasse diagram (stqBa).
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Clearly, P with the above operations is a stqBa-D. T does not hold in this algebra as Ix ¼ yix.

Definition 2.5. Let U;^;_;:; I;0;1h i be a stqBa. Then it is said to be a semi topological quasi-Boolean algebra with modal
axiom T (stqBa-T) if and only if Ix 6 x, for all x 2 U.
Proposition 2.4. A stqBa-T is always a stqBa-D.
Remark 2.3. By Example 2.5, it is clear that the converse of Proposition 2.4 is not true, i.e., a stqBa-D is not necessarily a
stqBa-T.

The following example is a stqBa-T where the modal axioms B(CIx 6 x) and S4(Ix 6 IIx) do not hold.

Example 2.6. Let T ¼ 0; x; y; z;1f g. Hasse diagram of the lattice is given in Fig. 5 and operations : and I are defined in the

tables given below.

T with the above operations is a stqBa-T. The modal axioms B and S4 are not valid in this algebra as CIy ¼ ziy and
Iy ¼ xiIIy ¼ 0.

Definition 2.6. Let U;^;_;:; I;0;1h i be a stqBa-T. Then it is said to be a semi topological quasi-Boolean algebra with modal
axiom B (stqBa-B) if and only if CIx 6 x, for all x 2 U (Cx ¼ :I:x).

The following example is a stqBa-B where the modal axioms S4 and S5(CIx 6 Ix) do not hold.

Example 2.7. The same set P in Example 2.2 is considered for this case also. Hasse diagram of the lattice is given in Fig. 6 and

operations : and I are defined in the tables given below.

P with the above operations is a stqBa-B. S4 and S5 are not available in this algebra as Iy ¼ xiIIy ¼ 0 and CIy ¼ yiIy ¼ x.
The following example is an instance of a tqBa where B and S5 are not valid. Note that the modal axiom S4 holds in a tqBa.

Example 2.8. The same set P as well as the same Hasse diagram of the lattice in Example 2.2 is considered for this case also.

Operations : and I are defined in the tables given below.

P with the above operations is a tqBa. But, B and S5 are not available in this algebra as CIx ¼ 1ix ¼ Ix.

Remark 2.4. By Example 2.7 and Example 2.8, it is obvious that stqBa-B and tqBa are independent algebras.
Logics and proper rough set models of these newly created algebras have been presented in Section 3 and Section 4

respectively.

3. Sequent calculi

It has been mentioned in Section 2 that to develop the Hilbert-type axiomatic systems corresponding to the new algebras
an implication (!) satisfying the condition (P!) has to have in the algebras.

We now check whether such a ! is available or not in the newly created algebras stqBa, stqBa-D, stqBa-T and stqBa-B.
It is clear that Example 2.1 becomes an instance for the algebras stqBa, stqBa-D, stqBa-T and stqBa-B. As a result, no such

! can be defined in terms of other operations satisfying the property (P!) in these algebras. Hence, the Hilbert-type axio-
matic systems corresponding to these algebras can not be constructed. However, the sequent calculi for these algebras will
be presented below.

Sequent calculus is a system that is used to formulate a logic. It differs from Hilbert-type axiomatic systems and Natural
Deduction. Sequent calculus deals with sequents which are of the form A ) B, where A and B are finite multisets (possibly
empty) of well formed formulas (wffs). We write, as conventionally, c; b; c ) d; c; d; b in lieu of the sequent
c; b; cf g ) d; c; d; bf g, where b; c; dare wffs. It is to be noted that) is just a symbol representing a sequent but is not available
in the logic language.

The sequent calculi for the algebras stqBa, stqBa-D, stqBa-T and stqBa-B are named SCstqBa, SCstqBa-D, SCstqBa-T,
SCstqBa-B respectively.

The alphabet of the languages of SCstqBa, SCstqBa-D, SCstqBa-T, SCstqBa-B consists of
110



Fig. 5. Hasse diagram (stqBa-T).
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� variables r, s, t, . . .
� constants ? and >
� Unary logical connectives : and i.
� Binary logical connectives ^ and _.
� parentheses (,).

c is a definable connective, defined as cc ¼ :i:c.
In usual way, formulae are formed and denoted by a; b; c; d; . . . etc.
Axioms and rules for SCstqBa: Axioms and rules of the logic system SCstqBa are as follows:

The above axioms and rules have been used to present the sequent calculus of qBa [12,8]. For SCstqBa, additionally, one
axiom and two rules are needed. These are:

Ax3 ic; id ) i c ^ dð Þ
Fig. 6. Hasse diagram (stqBa-B).
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Rule i c)d
ic)id (Ri)r )c

)ic :

In Rule :;:A means :a1;:a2; � � � ;:anwhen A is a1;a2; � � � ;an. Moreover, here, Ax stands for axiom and the rules LW, RW,
LC, RC, L_, R_, L^, R^, R ið Þr stand for left weakening, right weakening, left contraction, right contraction (these are called
structural rules), left rule for _, right rule for _, left rule for ^, right rule for ^, restricted right rule for i (these are called rules
for connectives) respectively. Besides, L ? and R> are two rules for constants respectively called rule for bottom (? to be
placed at the left side of the sequent) and rule for top (> to be placed at the right side of the sequent).

Further, it is to be noted that no exchange rules viz. LE (left exchange rule) and RE (right exchange rule):
LE A;c;d;B)C

A;d;c;B)C RE A)B;c;d;C
A)B;d;c;C are not required in these sequent calculi as A;B are taken multisets to define a sequent

A ) B. In a multiset, order of occurrence of elements does not matter e.g. a; b;a; cf g is the same as b; c;a;af g.
Axioms and rules for SCstqBa-D: All axioms and rules of the logic system SCstqBa along with one new axiom
Ax4 ic) cc.
Axioms and rules for SCstqBa-T: All axioms and rules of the logic system SCstqBa along with one new rule:
(Li)r c)d

ic)d

Axioms and rules for SCstqBa-B: All axioms and rules of the logic system SCstqBa-T along with one new axiom
Ax5 cic ) c.

Definition 3.1. Amodel of SCstqBa/SCstqBa-D/SCstqBa-T/SCstqBa-B is U;vh iwhereU ¼ U;^;_;:; I;0;1h i is a stqBa/stqBa-D/
stqBa-T/stqBa-B algebra and v is a valuation function defined as v ?ð Þ ¼ 0;v >ð Þ ¼ 1 and for each atomic wff p of the language
of SCstqBa/SCstqBa-D/SCstqBa-T/ SCstqBa-B, v pð Þ 2 U.
Remark 3.1. Any valuation function v can be extended to arbitrary formulae as follows v c ^ dð Þ ¼ v cð Þ ^ v dð Þ;
v c _ dð Þ ¼ v cð Þ _ v dð Þ;v :cð Þ ¼ :v cð Þ;v icð Þ ¼ Iv cð Þ; v ccð Þ ¼ Cv cð Þ where Cx ¼ :I:x.
Definition 3.2. A sequent A ) B, where both A;B are non empty multisets of wffs is said to be valid in a model U;vh i of
SCstqBa/SCstqBa-D/SCstqBa-T/SCstqBa-B if and only if v Að Þ 6 v Bð Þ, where v Að Þ means v að Þ ^ v bð Þ ^ v cð Þ . . . ^ v dð Þ when A
is a; b; c . . . ; d and v Bð Þ means v að Þ _ v bð Þ _ v cð Þ . . . _ v dð Þ when B is a; b; c . . . ; d. When A is £, i.e., the sequent is of the form
) B, it is said to be valid if and only if v Bð Þ ¼ 1 and when B is£, i.e., the sequent is of the form A ), it is said to be valid if and
only if v Að Þ ¼ 0;v Bð Þ and v Að Þ are defined in the same way as stated above.
Theorem 3.1. Systems SCstqB, SCstqBa-D, SCstqBa-T and SCstqBa-B are sound and complete with respect to the class of all
algebras stqBa, stqBaD, stqBaT, stqBaB respectively.
Proof. (Outline) Here, we consider the logic system SCstqBa to prove the result. Proof of remaining systems are similar. To
prove soundness, it is to be established that all axioms and rules in the logic system SCstqBa are valid. Mathematical induc-
tion is to be applied on n, the depth of the derivation of the sequent, to prove its validity.

For completeness, let us assume that H is the set of all wffs of the logic system SCstqBa. To obtain the Lindenbaum-Tarski
algebra for the logic system SCstqBa, a relation R on H is defined by cRd if and only if c ) d and d ) c are derivable sequents,
where c and d are any two well formed formulae. Then, R is an equivalence relation due to the presence of Ax1;Ax2 and Cut.
The Lindenbaum- Tarski algebra for the logic system SCstqBa with connectives ^;_;:; i; c is H=R;^;_;:; I;Ch i, where the
operations ^;_;:; I;Care defined as c½ � ^ d½ � ¼ c ^ d½ �; c½ � _ d½ � ¼ c _ d½ �;: c½ � ¼ :c½ �; I c½ � ¼ ic½ �; C c½ � ¼ cc½ �. The partial order
relation 6; c½ � 6 d½ � if and only if c) d is a derivable sequent, yields H=R;^;_;:; I;0;1h i as a stqBa (6being the lattice
order) where 0 ¼ ?½ �;1 ¼ >½ �. Now, we consider the canonical valuation v, i.e., v pð Þ ¼ p½ �, for all atomic wffs p 2 H. It can be
extended over H as v cð Þ ¼ c½ �, for all c 2 H. Then, U;vh i is a model of SCstqBa where U ¼ H=R;^;_;:; I;0;1h i. Let A ) B be a
valid sequent in every model of SCstqBa. Then, it is valid in the model U;vh i and consequently v Að Þ 6 v Bð Þ. Using axioms and
rules of SCstqBa, it can be shown that A ) B is derivable in the logic system SCstqBa. So, completeness is established.
4. Rough set models of some algebras

In this section, proper rough set models of some of the algebras presented in Section 2 will be developed. For this, as men-
tioned in the introduction, a pair of lower–upper approximations is needed which must be dual with respect to the quasi-
complementation. The notion of quasi� complementation [7] has been discussed in the introduction. Proposition 4.1 below
describes some of its properties.

Proposition 4.1. [7] Let g : U ! U be an involution, i.e., g g uð Þð Þ ¼ u, for all u 2 U. The following results hold.

1. g is a bijective mapping on U.
2. g g Pð Þð Þ ¼ P, for all P#U.
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3. g P [ Qð Þ ¼ g Pð Þ [ g Qð Þ, for all P;Q #U.
4. g P \ Qð Þ ¼ g Pð Þ \ g Qð Þ, for all P;Q #U.
5. � P ¼ g Pcð Þ, for all P#U (� P ¼ U � g Pð Þ ¼ g Pð Þð Þc is already defined in the introduction).
6. �� P ¼ P, for all P#U.
7. � P \ Qð Þ ¼� P[ � Q , for all P;Q #U.
8. � P [ Qð Þ ¼� P\ � Q , for all P;Q #U.

Our recent paper [11] provides a pair of lower–upper approximations which are dual with respect to the quasi-
complementation. In this paper, a g-approximation space U;Rg� �

has been defined as follows:
Let U;Rh i be a generalised approximation space and g : U ! U be an involution. A binary relation Rg on U has been defined

as:
for any two elements u and v 2 U; uRgv if and only if g uð ÞRg vð Þ: ð6Þ

That is, two elements u;v 2 U are related with respect to a new relation Rg if and only if their g-images are related in the
relation R.

U;Rg� �
is called a g-generalised approximation space or simply, a g-approximation space.

As g is an involution on U;R can be redefined from Rg as follows:
for any two elements u and v 2 U; uRv if and only if g uð ÞRgg vð Þ: ð7Þ

Similarly, it says that two elements u;v 2 U will be related in the relation R if and only if their g-images are so in the relation
Rg .

In general, there is no subset inclusion relation between R and Rg . However, the following results show how they are
related depending upon g.

Proposition 4.2. [11] The following statements are equivalent in a g-approximation space U;Rg� �
.

1. Rg ¼ R.
2. uRv implies g uð ÞRg vð Þ;8u;v 2 U.
3. g uð ÞRg vð Þ implies uRv ;8u;v 2 U.
4. uRgv implies g uð ÞRgg vð Þ;8u;v 2 U.
5. g uð ÞRgg vð Þ implies uRgv ;8u;v 2 U.
6. R#Rg .
7. Rg #R.

Let Ru ¼ v 2 U : uRvf g and Rg
u ¼ v 2 U : uRgv

� �
. As g is an involution, it is obvious that Rg g uð Þð Þ ¼ Ru and Rg

g g uð Þð Þ ¼ Rg
u, for all

u 2 U. But, there is no subset inclusion relation amongst Ru;Rg uð Þ;R
g
u and Rg

g uð Þ in general. The following results show how they
are linked depending upon R and g.

Proposition 4.3. [11] The following statements are equivalent in a g-approximation space U;Rg� �
.

1. Rg
u ¼ Rg

g uð Þ Ru ¼ Rg uð Þ
� �

;8u 2 U.

2. uRgv uRvð Þimplies g uð ÞRgv g uð ÞRvð Þ;8u;v 2 U.
3. g uð ÞRgv g uð ÞRvð Þimplies uRgv uRvð Þ;8u;v 2 U.
4. Rg

u #Rg
g uð Þ Ru #Rg uð Þ

� �
;8u 2 U.

5. Rg
g uð Þ #Rg

u Rg uð Þ #Ru
� �

;8u 2 U.

6. Ru ¼ Rg uð Þ Rg
u ¼ Rg

g uð Þ

� 	
;8u 2 U.
Proposition 4.4. [11] In a g-approximation space U;Rg� �
;Ru ¼ g Rg

g uð Þ

� 	
and Rg

u ¼ g Rg uð Þ
� �

, for all u 2 U.
Proposition 4.5. [11] In a g-approximation space U;Rg� �
the following results hold.

1. Rg is reflexive if and only if R is reflexive.
2. Rg is symmetric if and only if R is symmetric.
3. Rg is transitive if and only if R is transitive.
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4. Rg is serial if and only if R is serial.
Proposition 4.6. [11] If Rg Rð Þ is reflexive and transitive and Rg
u ¼ Rg

g uð Þ Ru ¼ Rg uð Þ
� �

, for all u 2 U then Rg ¼ R.

We now present the lower–upper approximations that have been defined in [11].
Let U;Rg� �

be a g-approximation space. The g-lower approximation and the g- upper approximation g ;
g : 2U ! 2U are

defined as: for any P 2 2U ,
Pg ¼ u 2 U : Rg
u # P

� � ð8Þ

and
Pg ¼ u 2 U : Rg
g uð Þ \ g Pð Þ– £

n o
: ð9Þ
It has been shown that g-lower approximation Pg and g-upper approximation Pg are dual to each other with respect to the

quasi-complementation � defined through g, i.e., � Pg
� � ¼� Pg

� �
and � Pð Þg ¼� Pg

� �
. Moreover, we have proved that Pg and

Pg are respectively Pawlakian lower approximation of P in the approximation space U;Rg� �
and Pawlakian upper approxima-

tion of P in the approximation space U;Rh i, i.e., Pg ¼ PRg ¼ x 2 U : Rg
x # P

� �
and Pg ¼ PR ¼ x 2 U : Rx \ P –£f g.

It has been mentioned earlier that Pg and Pg are dual approximations with respect to the quasi-complementation. But PR

and PR are not so. In fact, they are dual with respect to the set theoretic complementation. A necessary and sufficient con-
dition is presented below so that PR and PR are dual approximations with respect to the quasi-complementation.

Theorem 4.1. [11] Let U;Rh i be a generalised approximation space and g be an involution on U. Then for any P#U; PR and PR

are dual approximations with respect to the quasi-complementation defined through g if and only if R ¼ Rg .
Remark 4.1. From Theorem 4.1 one can say, in other words, that for a fixed involution g on U, it is possible to find a collec-
tion of relations R : R ¼ Rg� �

so that Pawlakian lower- upper approximations PR and PR are dual with respect to the quasi-
complementation as well.

However, when R– Rg ; Pg ; Pg
� �

– PR; PR
� �

and Pg ; Pg
� �

– PRg ; PRg
� �

, yet the following results hold.

Proposition 4.7. [11] In a g-approximation space U;Rg� �
, the following results hold.
1. Ug ¼ U and £g ¼ £.
2. If P#Q #U then Pg #Qg and Pg #Qg .

3. P \ Qg ¼ Pg \ Qg and P [ Qg ¼ Pg [ Qg , for all P;Q #U.

The counterpart of the modal axiom K (in quasi-Boolean base) in the form � P [ Qg # � Pg
� � [ Qg does not hold in gen-

eral. The following example shows this.

Example 4.1. Let U ¼ u1;u2;u3;u4; u5;u6f g and g : U ! U be an involution defined by g u1ð Þ ¼ u4; g u2ð Þ ¼ u6; g u3ð Þ ¼
u3; g u4ð Þ ¼ u1; g u5ð Þ ¼ u5; g u6ð Þ ¼ u2. Let R ¼ u1;u1ð Þ; u1;u4ð Þ; u4;u1ð Þ; u3;u6ð Þf g be a relation on U. Then,
Rg ¼ u4;u4ð Þ; u4;u1ð Þ; u1;u4ð Þ; u3;u2ð Þf g. Let P ¼ u2;u3; u4f g and Q ¼ u5;u6f g. Then, � P [ Qg ¼ u1;u2;u3;u5;u6f gand
� Pg

� � [ Qg ¼ u1;u2;u5;u6f g. Thus, � P [ Qg � � Pg
� � [ Qg .
Proposition 4.8. A sufficient condition so that � P [ Qg # � Pg
� � [ Qg holds, for all P;Q #U, is that R ¼ Rg .
Proof. Let u 2 � P [ Qg . Then, R
g
u # g Pð Þð Þc [ Q . Two possible cases are

1. u 2 g Pg
� �

2. u R g Pg
� �

.

For the second case, it is obvious that u 2� Pg
� � [ Qg . For the first case, u ¼ g vð Þ where v 2 Pg . Then, R

g
v # P and hence

g Rg
v

� �
# g Pð Þ, i.e., Ru # g Pð Þ [by Proposition 4.4 and u ¼ g vð Þ]. As, R ¼ Rg so, Ru ¼ Rg

u and therefore Rg
u \ g Pð Þð Þc ¼ £. Then,

Rg
u #Q [as Rg

u # g Pð Þð Þc [ Q] and therefore u 2 Qg . Hence the result follows.
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Remark 4.2.

1. When R ¼ Rg ; Pg and Pg become PR and PR respectively. Then � P [ Qg # � Pg
� � [ Qg turns into � P [ QR # � PRð Þ [ QR

which is not identical with Pc [ QR # PRð Þc [ QR (the counterpart of the modal axiom K in Boolean base)
2. Whether R ¼ Rg is a necessary condition or not for holding � P [ Qg # � Pg

� � [ Qg is unsolved.

When R is a serial relation on U, Pawlakian lower–upper approximations PR and PR satisfy the counterpart of the modal
axiom D: PR # PR [13,10]. But, the following Example 4.2 shows that Pg # Pg does not hold for a serial relation Rg .

Example 4.2. U and g are the same as stated in Example 4.1. Let R ¼ u1;u2ð Þ; u2;u1ð Þ; u3;u1ð Þ; u4;u6ð Þ; u5;u5ð Þ; u6;u2ð Þf g be a
serial relation on U. Then, Rg ¼ u4;u6ð Þ; u6;u4ð Þ; u3;u4ð Þ; u1;u2ð Þ; u5;u5ð Þ; u2;u6ð Þf g is a serial relation on U. Let P ¼ u2;u4;u5f g.
Then, Pg ¼ u1;u3;u5;u6f gand Pg ¼ u1;u5;u6f g. Thus, Pg � Pg .

A necessary and sufficient condition is obtained below so that Pg # Pg holds in a g-approximation space U;Rg� �
.

Theorem 4.2. In a g-approximation space U;Rg� �
; Pg # Pg holds for all P#U if and only if Rg

u \ Ru –£, for all u 2 U.
Proof. Let us assume that Pg # Pg holds for all P#U. Let u 2 U. Then, particularly, Rg
ug #Rg

u
g holds. This gives,

u 2 v 2 U : Rv \ Rg
u –£

� �
[as u 2 Rg

ug] and hence Rg
u \ Ru – £. Conversely, let Rg

u \ Ru – £, for all u 2 U. Let u 2 Pg . This

implies Rg
u \ Ru #Ru \ P and therefore Ru \ P –£ [as Rg

u \ Ru –£]. Hence, u 2 PR ¼ Pg .
Remark 4.3. Rg
u \ Ru – £, for all u 2 U implies that Rg(R) is a serial relation on U. But the converse is not true, i.e., there exists

a serial relation Rg(R) so that Rg
u \ Ru ¼ £, for some u 2 U. In Example 4.2, Rg

2 \ R2 ¼ £. Thus, the condition in Theorem 4.2 is
stronger than a serial relation. By Example 4.2, it is also noted that Rg

u \ Ru –£, for all u 2 U does not imply R ¼ Rg .
Proposition 4.9. [11] If Rg is reflexive in a g-approximation space U;Rg� �
, the following results hold.

1. Ug ¼ U and £g ¼ £.

2. Pg # P# Pg , for all P#U.

It is known to us that Pawlakian lower–upper approximations PR and PR satisfy the counterpart of the modal axiom B:

PRð ÞR # P, for all P#U, when R is a symmetric relation on U. But, Pg
� �

g # Pdoes not hold even for an equivalence relation
Rg on U as shown in Example 4.3 below.

Example 4.3. U and g are the same as mentioned in Example 4.1. Let R be an equivalence relation on U which partitions the
set U into the subsets u2; u3f g; u4f g; u1;u5f g; u6f g of U. Then, the equivalence relation Rg partitions the set U into the subsets

u3;u6f g; u1f g; u4; u5f g; u2f g of U. Let P ¼ u1;u3;u6f g. Then, Pg ¼ u1;u3;u6f g and Pg
� �

g ¼ u1;u2;u3;u5;u6f g and therefore

Pg
� �

g � P.
A necessary and sufficient condition is presented below so that the counterpart of the modal axiom B holds in a g-

approximation space U;Rg� �
.

Theorem 4.3. Let Rg be a symmetric relation in a g-approximation space U;Rg� �
. Then for any subset P of U; Pg

� �
g # P holds if

and only if Rg ¼ R.
Proof. Let Rg ¼ R. Then, Pg ; Pg
� � ¼ PR; PR

� �
and consequently for any subset P of U; Pg

� �
g # P holds. Conversely, let Pg

� �
g # P

hold, for any subset P of U. We shall show that R#Rg . If R ¼ £ then Rg ¼ £ and hence it is done. Let uRv and P ¼ Rg
v . Then,

Rg
v g

� 	
g #Rg

v i.e., z 2 U : Rz \ Rg
v g –£

n o
#Rg

v . Now, Rg
v g ¼ w 2 U : Rg

w #Rg
v

� �
and hence v 2 Rg

v g . As v 2 Ru[since uRv is

assumed], Ru \ Rg
v g –£ and therefore u 2 Rg

v . This gives uRgv as Rg is symmetric. Thus, R#Rg . Using Remark 4.2, Rg ¼ R.
Remark 4.4. By the above theorem, it is clear that the counterpart of the modal axiom B is possible with respect to g-lower
and g-upper approximations only when Rg ¼ R. Indeed, in that case, all the properties of lower/upper approximations with
respect to R as well as Rg coincide. Yet, there remains one significant point. The complementation and the quasi-
complementation do not coincide still the approximation operators are dual with respect to both of them.
115



M.R. Sardar and M.K. Chakraborty Information Sciences 621 (2023) 104–118
Proposition 4.10. [11] If Rg is transitive in a g-approximation space U;Rg� �
then for any subset P of U; Pg # Pg

� �
g and

Pg
� �

g # Pg hold.

It has been shown [11] that the counterpart of the modal axiom S5 : Pg
� �

g # Pg may not hold for an equivalence relation Rg

in a g-approximation space U;Rg� �
. The following Theorem 4.4 has been established in order to obtain Pg

� �
g # Pg in a g-

approximation space U;Rg� �
.

Theorem 4.4. [11] Let Rg be an equivalence relation in a g-approximation space U;Rg� �
. Then for any subset P of U; Pg

� �
g # Pg

holds if and only if Rg ¼ R.
The following example is considered to show that the counterpart of IP1: � Pg

� � [ Pg ¼ U may not hold even for an equiv-
alence relation Rg with Rg ¼ R.

Example 4.4. U and g are the same as stated in Example 4.1. Let R ¼ u1; u1ð Þ; u2;u2ð Þ; u3;u3ð Þ; u4;u4ð Þ;f
u5;u5ð Þ; u6;u6ð Þ; u1;u4ð Þ; u4;u1ð Þg. Then R is an equivalence relation on U with R ¼ Rg . Let P ¼ u1;u2;u3f g. Then,
� Pg

� � [ Pg ¼ u1;u2;u3;u4;u5f g– U.

We now state a necessary and sufficient condition so that � Pg
� � [ Pg ¼ U holds, for all P#U.

Theorem 4.5. Let Rg (RÞ be an arbitrary relation in a g-approximation space U;Rg� �
(generalized approximation space U;Rh i).

Then for any subset P of U;� Pg
� � [ Pg ¼ U (� PRð Þ [ PR ¼ U) holds if and only if Rg

u ¼ Rg
g uð Þ (Ru ¼ Rg uð Þ), for all u 2 U.
Proof. Let Rg
u ¼ Rg

g uð Þ, for all u 2 U. Let P be any subset of U and v be any element of U. If v 2� Pg
� �

, it is done. So, let

v R � Pg
� �

. Then, v R U � g uð Þ : Rg
u # P

� �
and hence v 2 g uð Þ : Rg

u # P
� �

. Then, v ¼ g tð Þ where Rg
t # P. As Rg

t ¼ Rg
g tð Þ [by the

hypothesis], it follows that v 2 Pg [since g tð Þ ¼ v]. Thus, � Pg
� � [ Pg ¼ U, for any subset P of U. Conversely, let

� Pg
� � [ Pg ¼ U, for any subset P of U. Let u 2 U. It is to be shown that Rg

u ¼ Rg
g uð Þ. Let P ¼ Rg

g uð Þ. Then, Pg ¼ v : Rg
v #Rg

g uð Þ
n o

.

We now claim that u 2 Pg . If not, u 2� Pg
� �

as � Pg
� � [ Pg ¼ U. Then, u R g vð Þ : Rg

v #Rg
g uð Þ

n o
. As g is bijective on U, let

u ¼ g zð Þ, and then Rg
z �Rg

g uð Þ, i.e., Rg
g uð Þ �Rg

g uð Þ [as u ¼ g zð Þ implies z ¼ g uð Þ], which is a contradiction. Thus,

u 2 Pg ¼ v : Rg
v #Rg

g uð Þ

n o
and henceRg

u #Rg
g uð Þ. Using Remark 4.3, Rg

u ¼ Rg
g uð Þ.
Note 4.1. As Rg
u ¼ Rg

g uð Þ implies and implied by Ru ¼ Rg uð Þ [by Proposition 4.4], both � Pg
� � [ Pg ¼ U and � PRð Þ [ PR ¼ U in

Theorem 4.5 hold good for any one of the conditions Rg
u ¼ Rg

g uð Þ and Ru ¼ Rg uð Þ.

In order to view some of the results of this section at a glance we refer to Table 1.

4.1. Rough set models for stqBa, System0 algebra, stqBa-D, stqBa-T, stqBa-B, tqBa, tqBa5 and IA1

In respect of the results of algebras developed in Section 2 and the properties of Pg and Pg introduced in this section, rough
set models for the algebras stqBa, System0 algebra, stqBa-D, stqBa-T, stqBa-B, tqBa, tqBa5 and IA1 are presented below.

Rough Set model for a stqBa: Let U;Rg� �
be a g-approximation space. Then, 2U ;\;[;�;£;U

D E
is a qBa, where

� P ¼ g Pð Þð Þc , for all P 2 2U [by Proposition 4.1]. We now define IP, for all P#U as IP ¼ Pg . Then by Proposition 4.1 and Propo-

sition 4.7, 2U ;\;[;�; I;£;U
D E

is a stqBa.

Remark 4.5. By Proposition 4.1, Proposition 4.7 and Definition 2.2, the above model of stqBa is also a model for System0
algebra.

Rough Set model for a stqBa-D: Let Rg be a relation on U so that Rg
u \ Ru –£, for all u 2 U. Then, by Proposition 4.1,

Proposition 4.7 and Theorem 4.2, 2U ;\;[;�; I;£;U
D E

is a stqBa-D.

Rough Set model for a stqBa-T: For a reflexive relation Rg on U, by Proposition 4.1, Proposition 4.7 and Proposition 4.9,

2U ;\;[;�; I;£;U
D E

is a stqBa-T.

Rough Set model for a stqBa-B: For a reflexive and symmetric relation Rg on U with Rg ¼ R, by Proposition 4.1, Propo-

sition 4.7, Proposition 4.9 and Theorem 4.3, 2U ;\;[;�; I;£;U
D E

is a stqBa-B.

Remark 4.6. By Proposition 4.8, the algebraic counterpart of the modal axiom K holds in the above model of stqBa-B as
Rg ¼ R. Thus, it is also a model for the abstract algebra stqBa-B along with modal axiom K in the form I :x _ yð Þ 6 :Ix _ Iy.
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Table 1
Some results on the two lower–upper approximations

Nature of R Result

R is arbitrary but R– Rg (1) Pg andPg are dual with respect to the quasi-complementation.

(2) Pg ¼ PR .
(3) Pc [ QR # PRð Þc [ QR , i.e, the modal axiom K in Boolean base holds.

(4) � P [ Qg � � Pg
� � [ Qg , i.e, the modal axiom K in quasi-Boolean base does not

hold.
(5) Pg – PR .

(6) PR and PR are not dual with respect to the quasi-complementation.
R is arbitrary but R ¼ Rg (1) Pg ¼ PR .

(2)Pg ¼ PR .
(3) � P [ Qg # � Pg

� � [ Qg , i.e, the modal axiom K in the quasi-Boolean base holds.

(4) PR and PR are always dual with respect to both the quasi-complementation and
complementation.

R is a serial relation with Ru \ Rg
u ¼ £, for at least

one u 2 U
(1)PR # PR holds for all P#U.

(2) Pg # Pg does not hold for at least one P#U.
R is a (serial) relation with Ru \ Rg

u –£, for all
u 2 U

(1)PR # PR holds for all P#U.

(2) Pg # Pg holds for all P#U.
R is reflexive but R– Rg (1) Pg # P# Pg ¼ PR .

(2) PR and PR are not dual with respect to the quasi-complementation.
(3)Pg ; PR # P but there is no fixed subset inclusion relation between PR and Pg .

R is symmetric but R– Rg (1) PRð ÞR # P

(2) Pg
� �

g � P
R is transitive (1) PR # PRð ÞR and PR

� �
R # PR .

(2) Pg # Pg
� �

g and Pg
� �

g # Pg .

R is equivalence but R– Rg (1) PRð ÞR # PR .

(2) Pg
� �

g � Pg .

(3) Pg # P# Pg ¼ PR .

(4) PR and PR are not dual with respect to the quasi-complementation.
(5)Pg ; PR # P but there is no fixed subset inclusion relation between Pg and PR .

R is any relation with Ru ¼ Rg uð Þ , for all u (1) � PRð Þ [ PR ¼ U.

(2) � Pg
� � [ Pg ¼ U.
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Rough Set model for a tqBa: For any reflexive and transitive relation Rg on U, by Proposition 4.1, Proposition 4.7, Propo-

sition 4.9 and Proposition 4.10, 2U ;\;[;�; I;£;U
D E

is a tqBa.

Rough Set model for a tqBa5: For any equivalence relation Rg on U with Rg ¼ R, by Proposition 4.1, Propositions 4.7,

Proposition 4.9, Proposition 4.10 and Theorem 4.4, 2U ;\;[;�; I;C;£;U
D E

is a tqBa5, where IP ¼ Pg ¼ PR and CP ¼ Pg ¼ PR.

Remark 4.7. By Proposition 4.8, the algebraic counterpart of the modal axiom K also holds in the above model of tqBa5 as
Rg ¼ R. Thus, it is also a model for the abstract algebra tqBa5 along with the modal axiom K.
Rough Set model for a IA1: For any equivalence relation Rg on U with Rg
u ¼ Rg

g uð Þ, for all u 2 U, by Proposition 4.1, Propo-

sition 4.6, Propositions 4.7, Proposition 4.9, Proposition 4.10, Theorem 4.4 and Theorem 4.5, 2U ;\;[;�; I;C;£;U
D E

is a IA1,

where IP ¼ Pg ¼ PR and CP ¼ Pg ¼ PR.

Remark 4.8. It has been shown in Proposition 2.3 that the algebraic counterpart of the modal axiom K holds in a IA1. In the
above model of IA1, the modal axiom K also holds (by Proposition 4.6 and Proposition 4.8).
A major objective of this paper is to obtain proper rough set models for the abstract algebras shown in Fig. 1 except for
pre-rough algebra and qBa. In this paper we have successfully obtained suchmodels for the algebras stqBa, system0, stqBa-D,
stqBa-T, stqBa-B, tqBa, tqBa5 and IA1 only.

5. Concluding remarks

We may summarise the contents of this paper and indicate some future directions of work as follows.
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� A number of abstract algebras whose core is qBa have been defined in order to build algebraic systems parallel to the
modal systems T, TB, TS4 and TS5. These algebras are also suitably mapped with old algebras as shown in Fig. 1. As a result,
a gap with respect to the standard modal systems in the previous studies of algebras may be considered as filled up.

� An algebraic form of the modal axiom K: I :x _ yð Þ 6 :Ix _ Iy (quasi-Boolean base), relevant for all these algebras discussed
in this sequel, is considered. It is found that this form of K is available in pre-rough algebra, IA1 and IA2 but not available
in the remaining algebras stqBa, stqBa-D, stqBa-T, stqBa-B, tqBa, tqBa5, IA3, System0, SystemI and SystemII.

� Based on the availability of this form of K and the other standard modal axioms in the algebras, proper set theoretic rough
set models of the algebras stqBa, stqBa-D, stqBa-T, stqBa-B, System0, tqBa, tqBa5 and IA1 have been constructed.

� The importance of these set models lies in their applicability in the domain of rough sets. It is true that no specific appli-
cation has been shown but it is expected that in future some concrete cases will arise corresponding to some of the set
models. Besides, it may be possible to establish the representation theorem of some of the algebras in terms of their set
models and this is mathematically important. However, in this paper the idea has not been explored, it is a future
possibility.

� For a fixed involution g, it is possible to obtain a collection of relations R : R ¼ Rg� �
such that PR and PR are dual with

respect to the complementation as well as the quasi-complementation. Resulting two algebras 2U ;\;[;c; PR; PR;£;U
D E

and 2U ;\;[;�; PR; PR;£;U
D E

are obtained, the first one is Boolean based whereas the last one is quasi-Boolean based. This

observation may open up further study in the field of rough set theory. It is to be remembered that the notions of quasi-
complementation and complementation do not coincide for an equivalence relation R with R ¼ Rg .
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